2.99 See Answer

Question: Find the indicated roots. Sketch the roots


Find the indicated roots. Sketch the roots in the complex plane.
The fifth roots of 32


> Find the points on the given curve where the tangent line is horizontal or vertical.  

> Find the points on the given curve where the tangent line is horizontal or vertical. r= e°

> Find the points on the given curve where the tangent line is horizontal or vertical. r= 3 cos e 3 cos

> Find the slope of the tangent line to the given polar curve at the point specified by the value of θ. r= cos(0/3), e= T

> Find the slope of the tangent line to the given polar curve at the point specified by the value of θ. r= cos 20, e = T/4

> Find the slope of the tangent line to the given polar curve at the point specified by the value of θ. r%3D 2 — sin 6, ө— п/3

> Find the slope of the tangent line to the given polar curve at the point specified by the value of θ. r= 1/6, 0 = T

> Evaluate ∑ni-1 3/2i-1.

> Prove the formula for the sum of a finite geometric series with first term and common ratio r ≠ 1: a(r* – 1) E ari- = a + ar + ar? + · .. + ar"-1 %3D i-1 r- 1

> A machinist is required to manufacture a circular metal disk with area 1000cm2. (a). What radius produces such a disk? (b). If the machinist is allowed an error tolerance of ±5 cm2 in the area of the disk, how close to the ideal radius in part (a) must t

> Show that the curve r = sin θ tan θ (called a cissoid of Diocles) has the line x = 1 as a vertical asymptote. Show also that the curve lies entirely within the vertical strip 0 < x < 1. Use these facts to help sketch the cissoid.

> Show that the polar curve r = 4 + 2 sec θ (called a conchoid) has the line x = 2 as a vertical asymptote by showing that limr→±∞ x = 2. Use this fact to help sketch the conchoid.

> The figure shows a graph of r as a function of &Icirc;&cedil; in Cartesian coordinates. Use it to sketch the corresponding polar curve. TA 2- -2-

> The figure shows a graph of r as a function of &Icirc;&cedil; in Cartesian coordinates. Use it to sketch the corresponding polar curve. TA 2+ 1-

> Sketch the curve with the given polar equation. r = 1 + 2 cos (θ/2)

> Sketch the curve with the given polar equation. r = 1 + 2 cos 2θ

> Use a calculator to find the length of the curve correct to four decimal places. r = 4 sin 30

> Use a calculator to find the length of the curve correct to four decimal places. r= 3 sin 20

> Find the exact length of the polar curve. r = θ, o < θ < 2π

> Find the exact length of the polar curve. r = θ2, o < θ < 2π

> Sketch the curve and find the area that it encloses. r = 2 – sin θ

> Find the exact length of the polar curve. r = e2θ, o < θ < 2π

> Find the exact length of the polar curve. r = 3 sin θ, o < θ < π/3

> Use a graph to estimate the values of θ for which the curves r = 3 + sin 5θ and r = 6 sin θ intersect. Then estimate the area that lies inside both curves.

> Sketch the curve with the given polar equation. r = 2 cos 4θ

> Find all points of intersection of the given curves. r2 = sin 2θ, r2 = cos 2θ

> Find all points of intersection of the given curves. r = sin θ, r = 2θ

> Find all points of intersection of the given curves. r = cos 3θ, r = 3θ

> Find all points of intersection of the given curves. r = 2 sin 2θ, r = 1

> Sketch the curve with the given polar equation. r = 1 – 3 cos θ

> Sketch the curve with the given polar equation. r = 2 (1- sin θ), θ > 0

> Evaluate the integral. f x – 9/(x + 5) (x – 2), dx

> Sketch the curve with the given polar equation. r = -3 cos θ

> Find the area of the region that lies inside both curves. r= sin 20, r = cos 20

> Find the area of the region that lies inside both curves. r = 1+ cos 0, r=1- cos e %3D

> Find the area of the region that lies inside both curves. r= V3 cos 0, r= sin e

> If u (x) = f (x) + ig (x) is a complex-valued function of a real variable x and the real and imaginary parts f (x) and g (x) are differentiable functions of x, then the derivative of u is defined to be u'(x) = f'(x) + ig'(x). Use this together with Equat

> Find the area of the region that lies inside the first curve and outside the second curve. r= 3 sin 0, r= 2 - sin e

> Use Euler&acirc;&#128;&#153;s formula to prove the following formulas for cos x and sin x: eir + e-ir cos x eir – e-ir sin x 2 2i

> Use De Moivre’s Theorem with n = 3 to express cos 3θ and sin 3θ in terms of cos θ and sin θ.

> Write the number in the form a + bi. e π+i

> Write the number in the form a + bi. e 2 + iπ

> Write the number in the form a + bi. e -iπ

> Write the number in the form a + bi. e iπ/3

> Write the number in the form a + bi. e 2πi

> Write the number in the form a + bi. e iπ/2

> Find the indicated roots. Sketch the roots in the complex plane. The cube roots of 1 + i

> Find the indicated roots. Sketch the roots in the complex plane. The cube roots of i

> Find the area of the region that lies inside the first curve and outside the second curve. r= 3 cos 0, r=1+ cos e

> Find the indicated roots. Sketch the roots in the complex plane. The eighth roots of 1

> Find the indicated power using De Moivre’s Theorem. (1 – i)8

> Find the indicated power using De Moivre’s Theorem. (2√3 + 2 i)5

> Find the indicated power using De Moivre’s Theorem. (1 – √3 i)5

> Find the indicated power using De Moivre’s Theorem. (1 + i)20

> Find polar forms for zw, z/w, and 1/z by first putting z and w into polar form. = 4(/3 + i), w = -3 – 3i

> Find polar forms for zw, z/w, and 1/z by first putting z and w into polar form. z = 2/3 – 2i, w = -1 +i

> Find polar forms for zw, z/w, and 1/z by first putting z and w into polar form. z = 4/3 – 4i, w = 8i %3D %3D

> Find polar forms for zw, z/w, and 1/z by first putting z and w into polar form. z = 3 + i, w = 1 + v3i

> Find the area of the region that lies inside the first curve and outside the second curve. r=1- sin 6, r= 1

> Write the number in polar form with argument between 0 and 2π. 8i

> Write the number in polar form with argument between 0 and 2π. 3 + 4i

> Write the number in polar form with argument between 0 and 2π. 1 – √3 i

> Write the number in polar form with argument between 0 and 2π. -3 + 3i

> Find all solutions of the equation. z2 + 1/2 z + 1/4 = 0

> Find all solutions of the equation. z2 + x + 2 = 0

> Find all solutions of the equation. 2x2 – 2x + 1 = 0

> Find all solutions of the equation. x2 + 2x + 5 = 0

> Find all solutions of the equation. x4 = 1

> Find all solutions of the equation. 4x2 + 9 = 0

> Find the area of the region that lies inside the first curve and outside the second curve. r= 2 cos e, r = 1

> Prove the following properties of complex numbers. (a) z + w = 7 + w (b) zw m = mz (q) (c) z* = 7", where n is a positive integer [Hint: Write z = a + bi, w = c + di.]

> Find the complex conjugate and the modulus of the number. -4i

> Find the complex conjugate and the modulus of the number. -1 + 2/2 i

> Find the complex conjugate and the modulus of the number. 12 – 15i

> Evaluate the expression and write your answer in the form a + bi. V-3V-12

> Evaluate the expression and write your answer in the form a + bi. V-25

> Evaluate the expression and write your answer in the form a + bi. i100

> Evaluate the expression and write your answer in the form a + bi. i3

> Evaluate the expression and write your answer in the form a + bi. 3 4 — Зі 3.

> Evaluate the expression and write your answer in the form a + bi. 1 1+ i

> Find the area of the region enclosed by one loop of the curve. r= 2 cos e - sec e

> Evaluate the expression and write your answer in the form a + bi. 3 + 2i 1- 4i

> Evaluate the expression and write your answer in the form a + bi. 1+ 4i 3 + 2i

> Evaluate the expression and write your answer in the form a + bi. 21(를 - 1)

> Evaluate the expression and write your answer in the form a + bi. 12 + 7i

> Evaluate the expression and write your answer in the form a + bi. (1 — 21)(8 — 3і)

> Evaluate the expression and write your answer in the form a + bi. (2 + 5i)(4 – i)

> Evaluate the expression and write your answer in the form a + bi. (4 – 41) – (9 + 31)

> Evaluate the expression and write your answer in the form a + bi. (5 – 6i) + (3 + 2i)

> Evaluate the indefinite integral as an infinite series. f ex – 1/x, dx

> Evaluate the indefinite integral as an infinite series. f x cos (x3) dx

> Find the area of the region enclosed by one loop of the curve. r=1+ 2 sin e (inner loop)

> For the limit illustrate Definition 1 by finding values of that correspond to e = 0.5 and e = 0.1 e* - 1 lim - 1

> Find a power series representation for the function and determine the interval of convergence. x? f(x) = .3 a - x .3

> (a). Use the binomial series to expand 1/ √1 - x2. (b). Use part (a) to find the Maclaurin series for sin-1 x.

> Use the Maclaurin series for sin x to compute si 30 correct to five decimal places.

> Use the Maclaurin series for ex to calculate e-0.2 correct to five decimal places.

> Find the Maclaurin series of f (by any method) and its radius of convergence. Graph f and its first few Taylor polynomials on the same screen. What do you notice about the relationship between these polynomials and f? f(x) = In(1 + x²)

> If the radius of convergence of the power series ∑∞n=0cnxn is 10, what is the radius of convergence of the series ∑∞n=0ncnxn-1? Why?

> Let fn(x) = (sin nx)/n2. Show that the series ∑fn(x) converges for all values of x but the series of derivatives ∑fn'(x) diverges when x = 2nπ, an integer. For what values of x does the series ∑fn"(x) converge?

2.99

See Answer